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Introduction
•Use of appropriate prior information (expert opinions) on

item parameters can improve estimation.

•Methods based on “probability assessment” (PA) on item
parameters are available (Kato, 2012; Tsutakawa & Lin,
1986), but detailed PA can be difficult and time-cosuming.

•Crude prior information: An expert gives each item his/her
“difficulty rating”such as Easy, Medium, and Difficult.

•Does this type of information improve estimation?
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Figure 1: Distribution of proportion correct by
difficulty rating from an expert (254 items)

Bayesian Hierarchical Modeling of Item Pa-
rameters
•The 2-parameter logistic model (2PLM): The probability

that respondent i (i = 1, . . . , N ) answers item j (j =
1, . . . , J) correctly is given by

P (uij = 1|θi, αj, βj) =
1

1 + exp(−αj(θi − βj))
(1)

• Prior distributions

– Ability parameter: θi
i.i.d.∼ N(0, 1)

– Model 1 (Fox, 2010, p. 72)[
lnαj

βj

]
i.i.d.∼ MVN(µ,Σ) (2)

Σ ∼ IW (Σ0,m) (3)
µ|Σ ∼ MVN(µ0,Σ/n) (4)

– Model 2 assumes different prior means for difficulty pa-
rameters based on the difficulty level k(j) = 1, . . . , K
assined a priori to each item:[

lnαj

βj

]
i.i.d.∼ MVN(µk(j),Σ) (5)

Σ ∼ IW (Σ0,m) (6)

µk(j)
i.i.d.∼ MVN(µ0,Ψ) (7)

– k(j) represents a prior difficulty level assigned to item j
(e.g., if item 1 is given level 3, then k(1) = 3)

– Let

µk(j) =
[
µαk(j) µβk(j)

]T (8)

Σ =

[
σ2
α σαβ

σαβ σ2
β

]
(9)

–µβk(j) represents the mean difficulty in class k(j).
– If the prior difficulty level k(j) reflects the reality...
∗µβk(j)s will be well separated from each other and in

the predicted order.
∗ Since k(j) accounts for the variation of item difficulty,

the “within-level” variance σ2
β will get smaller than in

the case of Model 1.
– Model 3 is the same as Model 2 but imposes inequal-

ity constraints on µbk(j)s according to the prior difficulty
ordering (i.e., more explicit formulation of a prior “hy-
pothesis” on item difficulty):

µb1 > µb2 > · · · > µbK (10)

Method
•Data

– J = 39 Japanese vocabulary items (multiple choice with
5 response options)

–N = 484 respondents (college students and adults)

•Difficulty ratings

– An expert rated each item at K = 3 difficulty levels:
∗Difficult (k(j) = 1), 10 items
∗Medium (k(j) = 2), 13 items
∗Easy (k(j) = 3), 16 items

• Parameter estimation

– Models 1 through 3
– Specification of hyperparameters

µ0 =
[
0 0

]T (11)
m = 4 (12)
n = 2 (13)

Σ0 =

[
4 0
0 4

]
(14)

Ψ =

[
4 0
0 4

]
(15)

– MCMC computation was perfomed by OpenBUGS and
R (R2OpenBUGS)

– 6000 draws from the posterior distribution (3 chains,
4000 iterations for each chain, and the first 2000 dis-
carded as burn-in)

Results
•DIC was comparable for all three models (DIC = 20910.0)

•Covariance of item parameters (Σ̂)

Model 1 Model 2 Model 3
σ̂2
α 0.10 > 0.08 > 0.08

σ̂2
β 2.21 > 1.89 > 1.85

σ̂αβ −0.20 < −0.10 < −0.10

– Variance of item difficulty (σ̂2
β): 14% (Model 2) and

16% (Model 3) reduction from Model 1 by incorporat-
ing prior information

•Means of item parameters (µ̂ or µ̂k(j))

Model 1 Model 2 Model 3
µ̂α −0.29
µ̂α1 (Difficult) −0.57 −0.56
µ̂α2 (Medium) −0.27 −0.27
µ̂α3 (Easy) −0.15 −0.14

µ̂β −0.19
µ̂β1 (Difficult) 1.26 1.27
µ̂β2 (Medium) 0.03 0.15
µ̂β3 (Easy) −0.34 −0.42

– In Model 2, µ̂βk(j)s are well separated from each other
and follow the predicted order (µ̂β1 > µ̂β2 > µ̂β3).

– Model 3 imposed inequality constraints on the Model 2
means, but the estimates were almost the same as those
in Model 2.

– µ̂αk(j) tends to get smaller as the difficulty level goes up
(Models 2 and 3; more difficult, less discriminative).

• Item discrimination parameter estimates (α̂j)

0.
0

0.
5

1.
0

1.
5

Difficulty Level

α̂

Difficult Medium Easy

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● Model 1
Model 2
Model 3

Figure 2: Estimates of item discrimination parameters

• Item difficulty parameter estimates (β̂j)
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Figure 3: Estimates of item difficulty parameters

• Posterior standard deviations of item discrimination pa-
rameters

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Difficulty Level

σ(
α̂)

Difficult Medium Easy

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● Model 1
Model 2
Model 3

Figure 4: Posterior SDs of item discrimination
parameters

• Posterior standard deviations of item difficulty parameters
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Figure 5: Posterior SDs of item difficulty parameters
– Much improvement was not found for estimation accu-

racy.

Conclusions and Further Considerations
•Use of “crude” prior information on item difficulty levels

– Means of item difficulty (µk(j)) well reflected the prior
difficulty ratings.

– However, “within-level” variance of item difficulty was
not reduced enough for shrinkage to the level mean (and
thus improvement of estimation accuracy) to occur.

– If the prior rating is valid, inequality constraints on the
level means would probably be trivial.

•Other elements to consider

– Number of difficulty levels
– Effect of feedback (training)
– Combining ratings from multiple experts
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