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Introduction
• Item response theory (IRT) models the probability of a

correct response to each test item as a function of latent
ability θ.

• Practical demands in IRT item paremeter estimation

– Reasonably high accuracy, while
– Keeping the sample size minimum to reduce cost

•Can prior information be used to improve estimation?

1. Estimates of existing, similar test items
2. Prediction by item properties (e.g., contents, required

skills, and format)
3. Expert (item writer, teacher, etc.) opinion to construct

informative prior distributions for item parameters

♦ In this study we consider the 3rd approach

The 2-Parameter Logistic IRT Model (2PLM)
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Figure 1: Item response functions
• Item response function (IRF; Fig. 1)

Pr(Xj = 1|θ, ξj) =
1

1 + exp[−aj(θ − bj)]
(1)

Item j = 1, . . . , J

Item response xj ∈ {0, 1}
1 = correct response, 0 = incorrect response

Item parameters ξj = (aj, bj)

aj = discrimination (slope), bj = difficulty (location)
Ability parameter θ ∈ (−∞,∞) (latent variable)

• ξj, j = 1, . . . , J , are estimated from field-testing data

Probability Assessment of Item Parameters
(Tsutakawa & Lin, 1986)
•Hard to work on ξ directly without knowledge on IRT

– It would be easier to deal with correct-response proba-
bilities

– Since IRT is a model of correct response probabili-
ties conditional on θ, elicitation is also made about the
correct-response probabilities at certain θ points.

– The elicited prior will then be transformed onto the
space of item parameters.

• Pick two points, θ1 < θ2, on the θ scale

– These θ points should represent locations of well-defined
populations of test takers (e.g., the population mean of
all 8th graders), which is familiar to the expert

•Under the 2PLM let p = (p1, p2), where

pk =
1

1 + exp[−a(θk − b)]
, k = 1, 2 (2)

– Each pk represents the correct-response probabilities
conditional on θk

•Tsutakawa and Lin (1986) showed that ξ and p are one-
to-one and derived a prior distribution of ξ from that of p
under the constraint 0 < p1 < p2 < 1 (or a > 0)

1. The range constraint makes it hard to construct in a pre-
cise manner a joint prior of p from its marginals which
are assumed independent (they only provided informal
justification)

2. The resulting ξ prior is almost of the conjugate form but
not exactly

3. Marginal priors for pks are determined by their moments,
but a more probabilistic elicitation procedure may be de-
sirable to work with experts

Proposed Method
•The proposed method features two possible improvements

over Tsutakawa and Lin’s (1986) procedure: (a) reparam-
eterization of IRF and (b) the elicitation method

Reparameterization and Transformation from
p to ξ

•Reparameterize the IRF as

pk =
1

1 + exp[−(aθk + d)]
, k = 1, 2 (3)

where d = −ab (redefine ξ = (a, d)). Then

a =
L2 − L1

θ2 − θ1
, d =

θ2L1 − θ1L2

θ2 − θ1
, (4)

where Lk = ln[pk/(1− pk)], k = 1, 2

•There is a one-to-one correspondence between

P = {(p1, p2)|0 < pk < 1, k = 1, 2} and (5)
Ω = {(a, d)| −∞ < a < ∞,−∞ < d < ∞} (6)

• Jacobian of transformation p → ξ is

J =

∣∣∣∣∂p∂ξ
∣∣∣∣ = (θ1 − θ2)p1(1− p1)p2(1− p2) 6= 0 (7)

with pks replaced by (3)

• If we assume independent beta priors for p1 and p2,

f (p) =
2∏

k=1

prk−1
k (1− pk)

sk−1, p ∈ P , (8)

and then the prior for ξ is

g(ξ) = f (p)|J| (9)

∝
2∏

k=1

prkk (1− pk)
sk (10)

∝
2∏

k=1

exp[−sk(aθk + d)]

[1 + exp[−(aθk + d)]]rk+sk
, ξ ∈ Ω (11)

(Fig. 2). This leads to the conjugate form to the likelihood
function based on the reparameterized IRF (3).
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Figure 2: Transformation from P to Ω

Elicitation of Beta Priors
• If we adopt the independent beta marginal priors (8), elic-

itation can be made for p1 and p2 independently to deter-
mine the values of (rk, sk), k = 1, 2, in (11)

•We use a simple two-point fractile method and fit a beta
distribution independently for each pk

1. Specify two quantiles 0 < xq1 < xq2 < 1 on the pk scale
(xq1 = 0.5 and xq2 = 0.8 are used in the current study;
different values may be used for different k)

2. Ask the expert to provide his/her estimate of the prob-
ability qkm = P (pk ≤ xqm), m = 1, 2, k = 1, 2; the
question to be asked may be like:

“What is your estimate of the probability that the
correct-response rate for people with θ =[θk] is no
greater than [xqm]?”

3. Step 2 yields two-point quantile-probability “data”
(xqm, qkm), m = 1, 2, k = 1, 2, to which a beta distri-
bution is fit for each k

4. Use a bisecting search algorithm by van Dorp and Maz-
zuchi (2004) to estimate the beta parameters (rk, sk)
(the program BETA-CALCULATOR is available for this
computation) (Fig. 3)
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Figure 3: Elicited marginal beta priors of p1 and p2 at θ1
and θ2, respectively

A Real Experiment
•An item editor was asked to elicit his prior distribution for

a reading comprehension item

• Specifications

θ1 = −0.50 (mean of a particular high school)
θ2 = 0.50 (mean of a particular college)
xq1 = 0.50

xq2 = 0.80

•His estimated probabilities (qkm) were

Quantile θ1 = −0.50 θ2 = 0.50

xq1 = 0.50 50% 5%
xq2 = 0.80 70% 40%

•His beta parameters were estimated as (r1, s1) =
(0.48, 0.48) and (r2, s2) = (4.54, 1.10), and the joint beta
prior was transformed onto Ω (Fig. 4)
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Figure 4: Elicited joint prior for (a, d)

Further Considerations
•A program which implements parameter estimation with

the proposed prior distribution needs to be developed

•Elicitation at two different points of θ can be independent
or should be dependent?

•The use of the two-point fractile method could easily lead
to an overfitting problem

– If more than two qkms are elicited for each k, the result
could be very different

– What kind of fitting method is available?
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