Assessing Prior Distributions for the Item Parameters in the Two-Parameter Logistic IRT Model

Kentaro Kato[†]

Benesse Educational Research and Development Center/Center for Research on Educational Testing, Tokyo, Japan

Introduction

- Item response theory (IRT) models the probability of a correct response to each test item as a function of latent ability θ .
- Practical demands in IRT item paremeter estimation
- -Reasonably high accuracy, while
- Keeping the sample size minimum to reduce cost
- Can prior information be used to improve estimation?
- 1. Estimates of existing, similar test items
- 2. Prediction by item properties (e.g., contents, required skills, and format)

Proposed Method

• The proposed method features two possible improvements over Tsutakawa and Lin's (1986) procedure: (a) reparameterization of IRF and (b) the elicitation method

Reparameterization and Transformation from p to $\boldsymbol{\xi}$

• Reparameterize the IRF as

$$p_k = \frac{1}{1 + \exp[-(a\theta_k + d)]}, \qquad k$$

Figure 3: Elicited marginal beta priors of p_1 and p_2 at θ_1 and θ_2 , respectively

3. Expert (item writer, teacher, etc.) opinion to construct informative prior distributions for item parameters

 \Diamond In this study we consider the 3rd approach

The 2-Parameter Logistic IRT Model (2PLM)

Figure 1: Item response functions

• Item response function (IRF; Fig. 1)

$$\Pr(X_j = 1 | \theta, \boldsymbol{\xi}_j) = \frac{1}{1 + \exp[-a_j(\theta - b_j)]}$$
(1)

Item j = 1, ..., JItem response $x_j \in \{0, 1\}$ 1 = correct response, 0 = incorrect responseItem parameters $\boldsymbol{\xi}_j = (a_j, b_j)$ where d = -ab (redefine $\boldsymbol{\xi} = (a, d)$). Then

where
$$L_k = \ln[p_k/(1-p_k)], k = 1, 2$$

• There is a one-to-one correspondence between

$$\mathcal{P} = \{ (p_1, p_2) | 0 < p_k < 1, k = 1, 2 \} \text{ and}$$

$$\Omega = \{ (a, d) | -\infty < a < \infty, -\infty < d < \infty \}$$
(5)
$$x_{q_1} = 0.50$$

$$x_{q_2} = 0.80$$

= 1, 2

(3)

(4)

(9)

(10)

ullet Jacobian of transformation $\mathbf{p}
ightarrow oldsymbol{\xi}$ is

$$\mathbf{J} = \left| \frac{\partial \mathbf{p}}{\partial \boldsymbol{\xi}} \right| = (\theta_1 - \theta_2) p_1 (1 - p_1) p_2 (1 - p_2) \neq 0 \quad (7)$$

with p_k s replaced by (3)

• If we assume independent beta priors for p_1 and p_2 ,

$$f(\mathbf{p}) = \prod_{k=1}^{2} p_k^{r_k - 1} (1 - p_k)^{s_k - 1}, \qquad \mathbf{p} \in \mathcal{P}, \quad (8)$$

and then the prior for $\boldsymbol{\xi}$ is

$$g(oldsymbol{\xi}) = f(\mathbf{p})|\mathbf{J}| \ \propto \prod^2 p_k^{r_k} (1-p_k)^{s_k}$$

A Real Experiment

• An item editor was asked to elicit his prior distribution for a reading comprehension item

• Specifications

 $\theta_1 = -0.50$ (mean of a particular high school) $\theta_2 = 0.50$ (mean of a particular college) $x_{q_1} = 0.50$

• His estimated probabilities (q_{km}) were

Quantile	$\theta_1 = -0.50$	$\theta_2 = 0.50$
$x_{q_1} = 0.50$	50%	5%
$x_{q_2} = 0.80$	70%	40%

• His beta parameters were estimated as $(r_1, s_1) = (0.48, 0.48)$ and $(r_2, s_2) = (4.54, 1.10)$, and the joint beta prior was transformed onto Ω (Fig. 4)

a_j = discrimination (slope), b_j = difficulty (location)
Ability parameter θ ∈ (-∞, ∞) (latent variable)
ξ_j, j = 1,..., J, are estimated from field-testing data

Probability Assessment of Item Parameters (Tsutakawa & Lin, 1986)

• Hard to work on $\boldsymbol{\xi}$ directly without knowledge on IRT

- -It would be easier to deal with correct-response probabilities
- -Since IRT is a model of correct response probabilities conditional on θ , elicitation is also made about the correct-response probabilities at certain θ points.
- -The elicited prior will then be transformed onto the space of item parameters.
- Pick two points, $\theta_1 < \theta_2$, on the θ scale
- These θ points should represent locations of well-defined populations of test takers (e.g., the population mean of all 8th graders), which is familiar to the expert
- Under the 2PLM let $\mathbf{p} = (p_1, p_2)$, where

 $p_k = \frac{1}{1 + \exp[-a(\theta_k - b)]}, \qquad k = 1, 2 \qquad (2)$

-Each p_k represents the correct-response probabilities conditional on θ_k

$$\propto \prod_{k=1}^{2} \frac{\exp[-s_k(a\theta_k+d)]}{[1+\exp[-(a\theta_k+d)]]^{r_k+s_k}}, \quad \boldsymbol{\xi} \in \Omega \quad (11)$$

(Fig. 2). This leads to the conjugate form to the likelihood function based on the reparameterized IRF (3).

Figure 2: Transformation from ${\cal P}$ to Ω

Elicitation of Beta Priors

- If we adopt the independent beta marginal priors (8), elicitation can be made for p_1 and p_2 independently to determine the values of (r_k, s_k) , k = 1, 2, in (11)
- We use a simple two-point fractile method and fit a beta distribution independently for each p_k

1. Specify two quantiles $0 < x_{q_1} < x_{q_2} < 1$ on the p_k scale

Figure 4: Elicited joint prior for (a, d)

Further Considerations

- A program which implements parameter estimation with the proposed prior distribution needs to be developed
- Elicitation at two different points of θ can be independent or should be dependent?
- The use of the two-point fractile method could easily lead to an overfitting problem
- If more than two q_{km} s are elicited for each k, the result could be very different
- What kind of fitting method is available?

References

- Tsutakawa, R. K., & Lin, H.-Y. (1986). Bayesian estimation of item resopnse curves. *Psychometrika*, 51, 251–267.
- van Dorp, J. R., & Mazzuchi, T. A. (2004). Parameter specification of the beta distribution and its Dirichlet extensions utilizing quantiles. In A. K. Gupta & S. Nadarajah (Eds.), *Handbook of beta distribution and its applications* (pp. 283–318). NY: Marcel Dekker.

- Tsutakawa and Lin (1986) showed that $\boldsymbol{\xi}$ and \mathbf{p} are oneto-one and derived a prior distribution of $\boldsymbol{\xi}$ from that of \mathbf{p} under the constraint $0 < p_1 < p_2 < 1$ (or a > 0)
- 1. The range constraint makes it hard to construct in a precise manner a joint prior of p from its marginals which are assumed independent (they only provided informal justification)
- 2. The resulting $\boldsymbol{\xi}$ prior is almost of the conjugate form but not exactly
- 3. Marginal priors for p_k s are determined by their moments, but a more probabilistic elicitation procedure may be desirable to work with experts

- $(x_{q_1} = 0.5 \text{ and } x_{q_2} = 0.8 \text{ are used in the current study;}$ different values may be used for different k)
- 2. Ask the expert to provide his/her estimate of the probability $q_{km} = P(p_k \le x_{q_m}), m = 1, 2, k = 1, 2$; the question to be asked may be like:
 - "What is your estimate of the probability that the correct-response rate for people with $\theta = [\theta_k]$ is no greater than $[x_{q_m}]$?"
- 3. Step 2 yields two-point quantile-probability "data" $(x_{q_m}, q_{km}), m = 1, 2, k = 1, 2$, to which a beta distribution is fit for each k
- 4. Use a bisecting search algorithm by van Dorp and Mazzuchi (2004) to estimate the beta parameters (r_k, s_k) (the program BETA-CALCULATOR is available for this computation) (Fig. 3)