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Introduction
•Assembly of IRT-based tests requires a target test informa-

tion function (TIF)

• Specification of the target TIF takes into consideration a
desired level of estimation accuracy, overall characteristics
of the item pool, empirical validation (simulation or trials
and errors), etc.

• It would be useful if there is a systematic method to obtain
a target TIF

• Focus on classification tests

♦ A refinement of the previous study presented at IMPS
2011

– The previous study assumed a specific functional form
for the risk function. It ended up with bimodal TIFs
which were not very useful.

– The current study aims at obtaining a smoother, uni-
modal target TIF for more practical use

Decision theoretical formulation of pass/fail
classification based on IRT
• Setting (Fig. 1)

– Use the MLE θ̂ to make a pass/fail decision
– The threshold is set to 0 and the population (or prior)

distribution of θ is assumed to be N(µ, 1).
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Figure 1: Pass-fail classification
•Target TIF: T (θ)

•The asymptotic sampling distribution of MLE θ̂ is

θ̂|θ ·∼ N(θ, 1/T (θ)) (1)

•Decision rule: d : Θ → {Pass, Fail}

d(θ̂) =

Pass, θ̂ > 0

Fail, θ̂ ≤ 0
(2)

•Loss function: L(θ, d(θ̂))

Decision
Fail Pass

True State θ̂ > 0 θ̂ ≤ 0

θ > 0 1 0
θ ≤ 0 0 1

•Risk function: R(θ)

R(θ) = Eθ̂|θ[L(θ, d(θ̂))] (3)

≈
∫

Θ
L(θ, d(θ̂))φ(θ̂|θ, 1/T (θ))) dθ̂ (4)

=

Φ(−θ
√

T (θ)), θ > 0

1 − Φ(−θ
√

T (θ)), θ ≤ 0
(5)

where φ(θ̂|θ, 1/T (θ)) is the pdf of N(θ, 1/T (θ)), and Φ(·)
is the standard normal cdf. R(θ) is the misclassification
rate given θ.

•Bayes (preposterior) risk: r(µ)

r(µ) = Eθ[R(θ)] =
∫

Θ
R(θ)φ(θ|µ, 1) dθ (6)

where φ(θ|µ, 1) is the pdf of N(µ, 1). r(µ) is the overall
misclassification rate given µ.

Problem
• Specifying T (θ) which ensures the overall misclassifica-

tion rate r(µ) being less than a certain value α, given the
population mean µ

Method
•Assume the following functional form for the target TIF:

T (θ) =
z2
p/s

2

θ2/s2 + 1
=

z2
p

θ2 + s2
(7)

where s > 0 is the “scale” parameter, and zp = Φ−1(p),
with p = limθ→∞ R(θ), is a prespecified “height adjuster”

•The risk function (4) is then reexpressed as

R(θ) = Φ

−
√

z2
pθ

2

θ2 + s2

 (8)

•Compute the Bayes risk by discrete approximation to the
integral (6):

r(µ) ≈ f (s) =
∑
q

Φ

−
√√√√ z2

pθ
2
q

θ2
q + s2

wq (9)

where θq, q = 1, . . . , Q, represent appropriate quadrature
points and wqs are the corresponding weights which ap-
proximate N(µ, 1)

•Φ(·) in each summand in (9) is monotone increasing with
respect to s, so given µ and α > p we can find a value of s
such that f (s) = α (the overall misclassification rate)

– Numerical computation (Newton-Raphson method) is
required to find the solution of s

– The first derivative of f necessary for computation is
readily available:

f ′(s) =
∑
q

wqs
√

z2
qθ

2
q√

2π(θ2
q + s2)3/2

exp

(
−

z2
pθ

2
q

2(θ2
q + s2)

)
(10)

– Currently p is set to 10−6 ⇐⇒ zp ≈ −4.75

•Values of s were computed for several combinations of µ
and α (Fig. 2)
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Figure 2: Optimal values of s

Results
•Target TIFs (Fig. 3)

– The shapes of obtained TIFs are sufficiently “mild” so
that they could serve as a good “reference”

– More information is required as µ approaches to 0 (i.e.,
the population mean approaches to the threshold) and α
becomes small (i.e., less overall misclassifications)

•Conditional misclassification rates (Fig. 4)

– The misclassification rate distribution becomes tighter as
µ approaches to 0 (i.e., the population mean approaches
to the threshold)
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Figure 3: Target TIFs: T (θ)
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Figure 4: Conditional misclassification rates (risk
functions): R(θ)

Conclusions and further considerations
• Systematically obtain target TIFs which take into consid-

eration the overall misclassification rate and the location
of the population distribution of θ

– This should not be taken as a standard, but would serve
as a good starting point when one has to start from a
scratch

•Limitations

– Optimized value of s is sensitive to the value of zp, so it
should be specified with care

– The symmetric form of T (θ) is not very efficient when µ
departs from the threshold

• Possible extensions

– Asymmetric loss functions?
– How to approach multi-stage classifications?
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